

Partial Leading Edge Forcing of a Delta Wing at High Angles of Attack

1st Flow Control Conference 24 – 26th June 2002, St. Louis, MO

Stefan Siegel*
Thomas McLaughlin
Julie Albertson
US Air Force Academy, Colorado Springs, CO

Sponsored by AFOSR, Dr. John Schmisseur

*Postdoctoral Fellowship from the National Research Council (NRC)

Introduction

• F/A 18 Vortex Breakdown

Photo by NASA Dryden

Delta Wing Vortex Breakdown

Photo by Werle

Previous Findings

Guy, Morrow, McLaughlin 1999:

(Wind Tunnel Pressure Tap Measurements)

- Lift increase by up to 38% using blowing and suction
- Stall Angle increased by 10° AOA

Siegel, McLaughlin, Albertson 2001:

(Water Tunnel PIV Measurements)

- No Delay in Vortex Breakdown
- Vortex travels along elliptical path
- Instead, Momentum Deficit downstream of Vortex Breakdown is reduced

Research Objective

- Investigate forcing along portions of the leading edge
- Use PIV to investigate local changes in the flow field
- Use wind tunnel pressure measurements to obtain normal force data.

USAFA/DFAN AERONAUTICS RESEARCH CENTER

Water Tunnel Setup Pictures

PIV Camera Setup

Measurements across vortex core

Flow Laser Light Sheet

Side View of Test Section

Measurements along vortex core

Top View of Test Section

PIV Measurement Procedure

- 32x32 pixel interrogation area
- (Phase) Averaging over 25 data sets
- Spatial averaging in a 3x3 vector area
- Forced data acquisition phase locked to forcing input
- Reference quantities for normalization are the freestream velocity, and the root chord

Flow Field Sketch

Experimental Parameters

- 70° Delta Wing
- Water Tunnel Experiments
- 2D PIV Measurements
- $AOA = 35^{\circ}$
- $Re_C = 40k$
- Periodic Blowing and Suction forcing parallel to wing surface, normal to and along entire leading edge.
- $u'(t) = \sin(\omega t)$
- Forcing Parameters:

•
$$F+=1.75$$

•
$$C\mu = 0.004$$

$$F+=(fC_r)/U_{inf}$$

$$C\mu = 2(H/C_r)(/U_{inf})^2$$

Experimental Parameters - 2

- Different sections of the leading edge used for Forcing:
 - Front Half (Water Tunnel: 20-60% Chord)
 - Rear Half (Water Tunnel: 60-100% Chord)
 - Baseline: Entire Leading Edge
 - Baseline: Unforced Flow Field

Wind Tunnel Normal Force

Courtesy Dr. Yair Guy

40% Chord Vorticity – Unf vs Entire

120

100

60

20

40% Chord Vorticity – Front vs Rear

AERONAUTICS 70% Chord Vorticity –Unf vs Entire RESEARCH CENTER

Vorticity at 70% Chord Entire Leading Edge

70% Chord Vorticity – Front vs Rear

Axial Velocity Unforced

Axial Velocity Entire

Axial Velocity Front

USAFA/DFAN
AERONAUTICS
RESEARCH CENTER

Axial Velocity Rear

Axial Velocity vs X/C

Axial Velocity vs Phase

Conclusions - 1

Pressure Measurements Wind Tunnel

- Forcing along portions of the leading edge increases the normal force the most when applied towards the REAR of the delta wing
- Forcing along the FRONT does NOT significantly increase the normal force
- Forcing does not delay vortex breakdown

Water Tunnel PIV Measurements

A strong shear layer vortex forms along the portion of the leading edge where forcing is applied

Conclusions - 2

- The shear layer vortex carries high axial momentum fluid over the wing
- If applied downstream of main vortex breakdown, the shear layer vortex decreases the axial momentum deficit
- The interaction between the shear layer vortex and the main vortex when forcing along the FRONT causes the main vortex to travel in a elliptical path spanwise and wing normal
- Vortex Breakdown Location was not significantly affected by the forcing

Outlook

- Investigate spatially alternating blowing and suction along the leading edge forcing
 - Research at U Washington by C.B. Cain, Srigrarom et al.
- Gather more insight into details of the forced flow using CFD
 - CFD provides information on the entire 3D flow field, not just portions of it.
 - Under work at USAFA by Russ Cummings